

www.astesj.com 426

Co-designed accelerator for homomorphic encryption applications

Asma Mkhinini1,2,3*, Paolo Maistri1, Régis Leveugle1, Rached Tourki3

1Univ. Grenoble Alpes, CNRS, Grenoble INP**, TIMA, F-38000 Grenoble, France

2Univ. of Monastir, EµE, 5019 Monastir, Tunisia

3Univ. of Sousse, Eniso, BP 264 Erriadh 4023, Tunisia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 17 November, 2017
Accepted: 16 January, 2018
Online: 10 February, 2018

 Fully Homomorphic Encryption (FHE) is considered as a key cryptographic tool in
building a secure cloud computing environment since it allows computing arbitrary
functions directly on encrypted data. However, existing FHE implementations remain
impractical due to very high time and resource costs. These costs are essentially due to the
computationally intensive modular polynomial multiplication. In this paper, we present a
software/hardware co-designed modular polynomial multiplier in order to accelerate
homomorphic schemes. The hardware part is implemented through a High-Level Synthesis
(HLS) flow. Experimental results show competitive latencies when compared with hand-
made designs, while maintaining large advantages on resources. Moreover, we show that
our high-level description can be easily configured with different parameters and very large
sizes in negligible time, generating new designs for numerous applications.

Keywords:
Homomorphic encryption
Hardware accelerator
Modular polynomial
multiplication
High Level Synthesis

1. Introduction

This paper is an extension of the work originally presented in
2017 IEEE International Symposium on Design and Diagnostics
of Electronic Circuits and Systems [1].

Homomorphic encryption is one of the most significant
advances in cryptography in the last decade. It allows arbitrary
computations on ciphertexts without compromising the content of
the corresponding plaintexts. Thus, data can remain confidential
while it is processed, enabling useful tasks to be accomplished with
data being stored in untrusted environments. Considering the
recent growth in the adoption of the cloud computing and the large
deployment of the internet of things, homomorphic cryptography
will have a major impact on preserving security and privacy in the
coming years. Enterprise customers in the medical and financial
sectors, for example, can potentially save money and streamline
business processes by outsourcing not only the storage but also the
computation of their data to public clouds.

Since the introduction of the first fully homomorphic
encryption (FHE) scheme by Gentry [2] in 2009, we have noticed
substantial research in the area, for the purpose of designing new
homomorphic encryption algorithms, improving the schemes, their
implementations, and their applications. Among them, the schemes

that are based on Ring Learning With Errors (RLWE) [3] [4] [5]
are among the most efficient homomorphic schemes because of
their simpler structure, strong hardness assumptions, reduced key
size, and reduced ciphertexts expansion with respect to previous
schemes. Many of these RLWE-based schemes have been
implemented in software [6] [7] [8] [9]. Results report very large
latencies and resources consumption. So, in order to improve the
performance of homomorphic encryption schemes, there has been
research into the hardware acceleration of various homomorphic
schemes and their building blocks. To date, there have been few
hardware implementations for cryptosystems based on the RLWE
problem. The corresponding architectures were mainly designed
for fixed and small length operands and optimized for a restricted
set of parameters [10], [11], [12], making them limited in terms of
target applications and security requirements.

This paper presents a flexible and configurable accelerator
implementing modular polynomial multiplication; the main
performance bottleneck in RLWE-based homomorphic schemes.
The work describes a software/hardware (SW/HW) co-designed
architecture based on a High-Level Synthesis (HLS) approach. By
combining HLS and SW/HW partitioning, we are able to easily
configure our modular multiplier with large parameters (larger
than those seen in the literature) suited for high security
requirements. In addition, our modular polynomial reducer can be
defined as any generic (cyclotomic) polynomial, allowing
optimizations in the homomorphic context. We demonstrate the
efficiency of the approach on many designs of full modular

ASTESJ

ISSN: 2415-6698

*Asma Mkhinini, Univ. Grenoble Alpes, CNRS, Grenoble INP**, TIMA, F-38000
Grenoble, France, asma.mkhinini@univ-grenoble-alpes.fr Institute of Engineering
Univ. Grenoble Alpes

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 426-433 (2018)

www.astesj.com

Special issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030152

http://www.astesj.com/
mailto:asma.mkhinini@univ-grenoble-alpes.fr
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030152

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 427

polynomial multipliers satisfying different area/latency trade-offs.
So, our results can guide a designer in his choice of the
appropriated configuration with respect to the targeted application.

The paper is organized as follows. In section 2, the background
information is introduced. Section 3 presents the related works.
Section 4 describes our proposed design. Implementation details
are reported and discussed in section 5.

2. Theoretical background

2.1. Homomorphic encryption

The purpose of homomorphic encryption is allowing
computations on encrypted data. This means that if a user has a
function called f and wants to get f(m1, m2, … , mt) for some
plaintext messages (m1, m2, … , mt) , it is possible to instead
compute on the corresponding ciphertexts(c1, c2, … , ct)obtaining a
result which decrypts to f(m1, m2, … , mt).

Formally, if Encrypt(mi) = ci(i = 1. . t) then when
evaluating a function f homomorphically on(c1, c2, … , ct), we get:

Decrypt [f (c1, … , ct)] = f (m1, … , mt)

Since every function f can be expressed as a series of additions
and multiplications over some algebraic structure, a homomorphic
encryption scheme can be defined as an augmented encryption
scheme with two additional functions HE.Add() and HE.Mult() to
add or multiply on ciphertexts, that result in a ciphertext encrypting
respectively the sum or the product of the underlying plaintexts.
Figure 1 shows an example of application of FHE in the context of
cloud computing. When the number of successive additions
HE.Add() and multiplications HE.Mult() can be unlimited during
the evaluation step (i.e., computation of the function f), the scheme
is known as a fully homomorphic encryption scheme. This
generally requires to periodically refresh the ciphertext, otherwise
it will be impossible to decrypt. This operation is performed in the
encrypted domain and is called "bootstrapping".

2.2. Analysis of software implementations of homomorphic
schemes

In order to define the most frequent and time consuming
functions during the execution of homomorphic encryption
schemes, we profiled existing software implementations [6] [8] of
three RLWE-based cryptosystems. Figure 2 shows the profiling
results. The analysis reports that polynomial multiplication
consumes 41% to 58% of the total execution time. The polynomial
multiplication is needed in the encryption, decryption, and
evaluation (homomorphic multiplication) steps, as well. For
instance, we resume in Figure 3 the operation flow of
homomorphic multiplication of two ciphertexts (c1, c2) in case of
scheme 2 (see Figure 2). In practice, we need 4 polynomial

multiplications in order to get cmult. For this reason, a hardware
acceleration of this function is of great interest. Hence, an
optimized implementation of the modular polynomial
multiplication is the target of this paper.

2.3. Modular polynomial multiplication in RLWE-based schemes

In RLWE-based cryptosystems, the primitives are defined over
a modular polynomial ring of the form Rq = ℤq[x] f(x)⁄ where
f(x) is a specific irreducible polynomial (cyclotomic polynomial)
of degree n and q is an integer modulus (𝑞𝑞 > 0). Parameters n and
q define respectively the degree and the coefficient size of
polynomials in Rq. Operating in Rq requires reductions modulo q
and modulo f(x).

Let A(x) = an−1xn−1 + … . +a0 ≡ (an−1, … . , a0) and
B(x) = bn−1xn−1 + … . +b0 ≡ (bn−1, … . , b0) be two
polynomials of Rq. Computing C(x) = A(x) × B(x) in Rq needs
to first compute the polynomial multiplication of A(x) and B(x)
and then reduce the result modulo (𝑞𝑞, 𝑓𝑓(𝑥𝑥)).

Here is a simple example where n = 4, q = 5 and f(x) = x4 +
1. We choose:
A(x) = x3 + 3x2 + 4x1 + 1 ≡ (1,3,4,1) and
B(x) = 2x3 + 1x2 + 4x1 + 0 ≡ (2,1,4,0)
As shown in figure 4, the result 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥)
mod (𝑞𝑞, 𝑓𝑓(𝑥𝑥)) is equal to 𝐶𝐶 (3,0,2,0)𝑖𝑖𝑖𝑖𝑖𝑖

= .

2.4. Parameters Derivation

The schemes based on the RLWE problem are governed by a
number of inter-related parameters. The modulus q and the degree
n are chosen in order to satisfy a given security level 𝜆𝜆 and a given
multiplicative depth L (defined as the maximal number of
multiplications that the scheme can handle before it becomes

Encryption
HE.Add()
HE. Mult()

Untrusted cloud server

m1

m2

c1

c2

HE.Add (c1, c2)

HE.Mult (c1, c2) Decryption
m1+m2

m1.m2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

G
lo

ba
l e

xe
cu

tio
n

tim
e

1 2 3

Poly. Mult. Others
Homomorphic schemes

c1 c1,0

c1,1

c2 c2,0

c2,1

X

X

X

X

+

round mod q

round mod q

round mod q

c1

c2

c3

cmult

evk

Relinearization cmult

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 428

necessary to apply the bootstrapping procedure). The derivation of
these parameters is getting increasing attention lately, in order to
provide easy-to-use guidelines for real world applications. In a
nutshell, the methodology for parameters extraction aims at sizing
these parameters in order to respond to the desired trade-off
between security, efficiency, and correctness. Real use-cases of
homomorphic cryptosystems define requirements for the
multiplicative depth L and the security level λ, then one needs to
choose the corresponding values of n and q. Figure 5 illustrates the
wide space of practical parameters for RLWE-based schemes with
different constraints on L. These configurations are extracted from
[6] where the authors explain how to choose these parameters in
order to guarantee correctness and security against lattice attacks.
They use a lattice basis reduction algorithm based on the van de
Pol and Smart approach. This algorithm determines an upper
bound on the modulus in a given dimension and for targeted
numbers of multiplicative depth L, to ensure a given security level.

For example, with L set to 1, polynomials with a degree around
1024 and coefficients on less than 100 bits can be sufficient. But
another scheme requires at least a degree n = 101853 and a
coefficients size log2(q)= 278 bits to achieve a security level λ =
80 bits and a multiplicative depth of 20. Consequently, if we want
to target a large set of real applications, our design must be flexible
and accept such variations of the parameters.

3. Related works

Two principal ways are employed in order to accelerate
homomorphic cryptosystems: hardware implementation and GPU
(Graphic Processing Unit) acceleration. Hardware accelerators
focus mainly on accelerating the most complex functions of
homomorphic encryption schemes. There has been some research
already conducted into hardware implementations of RLWE-based
schemes and their related building blocks. Almost all of them focus
on the polynomial multiplication.

Many of these implementations have used the Number
Theoretic Transform (NTT) or the Negative Wrapped Convolution
(NWC) to perform polynomial multiplication in Rq efficiently.
NTT and NWC are two special forms of the Fast Fourier
Transform (FFT), known as the asymptotically fastest algorithm
for computing polynomial multiplication.

In [10], Doröz et al. propose an implementation of the modular
polynomial multiplication computed with the NTT algorithm and
a Barrett reducer. A pre-computation based on the Chinese
Remainder Theorem (CRT) is performed on input polynomials to
reduce the size of coefficients. The overall architecture is based on
an array of units, which gives some flexibility to process several
residue polynomials in parallel. They evaluate their architecture on

polynomials of fixed degree n =215, and fixed coefficients size
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑞𝑞) = 32 bits. Their accelerator was dedicated for a specific
homomorphic scheme. In [11], Chen et al. present an optimized
design of the modular polynomial multiplication.

All computations are carried out in the FFT domain on
polynomials with degree n ∈ [256, 2048] and coefficients size
∈[20, 29]. They provide a selection method for the parameter set
supporting efficient modular reduction, meeting at the same time
the security requirements for RLWE and Somewhat Homomorphic
Encryption (SHE) schemes. SHE means that the maximum number
of successive operations in the encrypted domain is limited.
Though efficient, this selection leads to many restrictions on the
polynomials supported by the design: polynomial modular
reduction is in fact computed with respect to the common choice
f(x) = xn + 1. When FFT multiplication using NWC is employed,
they show that the modular reduction (xn + 1) is eliminated; this
elimination comes at the expense of pre- and post-computation
steps. A hardware architecture for the modular polynomial
multiplication is described in [13]. They provide a fast unit for
polynomial operations using CRT and NTT for multiplication
combined with an optimized memory access scheme and a Barrett
reduction method. The implemented unit can be used to instantiate
a specific encryption scheme. Results are provided for n = 32768
and 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑞𝑞) = 1228 bits. The authors of [14] use the Karatsuba
algorithm to implement the modular polynomial multiplication in
hardware. They demonstrate that for various degrees and
coefficient sizes, Karatsuba can be a good alternative to FFT.
Lastly, Jayet-Griffon et al. [12] consider the polynomial
multiplication of 512-degree polynomials with 32-bit coefficients.
They analyze and compare three algorithms (Karatsuba, FFT, and
Schoolbook): the Schoolbook method is shown as the most
efficient for a hardware implementation, due to its simple and
regular structure. Modular reductions were not covered in their
work.

All the aforementioned related works reported significant
speed up factors when compared with software implementations.
This speed up illustrates that further research into hardware
implementations could greatly improve the performance of FHE
schemes. However, they are almost all designed for fixed length
operands and optimized for one specific type of multiplication
algorithm (mainly FFT-based algorithms) which puts restrictions
on the parameters selection. This makes them limited to some
specific schemes and application domains. Besides, the operand

0 0 0 0

4 12 16 4

1 3 4 1

2 6 8 2

2 7 15 18 17 4 0

3 0 2 0

mod (5, x 4+1)

0A

4A

1A

2A

+

+

+

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 429

sizes are not very large, which has a direct impact on the security
level of the cryptosystem. When modular polynomial reductions
are performed, the simplest (and more limiting) choice is often
selected.

Consequently, existing designs can be considered as proof-of-
concept implementations only suitable for homomorphic
encryption with small multiplicative depth circuits and low
computation complexity. In the homomorphic context and because
of its rapid growth evolution, new designs with a wide range of
parameters are needed. These parameters are very large, consume
large amounts of memory, and require many resources in order to
perform efficient computations. Thus, memory storage and
available resources in a target device should be taken into
consideration, especially when manufacturing a specific circuit is
not affordable and FPGA (Field Programmable Gate Array)
platforms are therefore intended.

4. Software/Hardware design description

4.1. General presentation

We propose a hybrid and flexible SW/HW design based on a
generic polynomial multiplier. This design is basically constructed
from two parts: a dedicated hardware accelerator, and the software
running on a general-purpose processor. Our solution aims at
improving the overall performance and supporting much larger
parameter sets than previous designs while optimizing resources
for a given computation performance level. As in most previously
published approaches, we will demonstrate our solution on FPGA-
based implementations. However, the same approach may also be
used with pre-characterized libraries to generate an application-
specific integrated circuit (ASIC). The general-purpose processor
can be implemented on-chip, or the hardware part of the
accelerator can be connected to a computer. The interface between
hardware and software can thus be performed, for example,
through a high performance AXI (Advanced eXtensible Interface)
bus, when software is running on an embedded processor, or a PCI
(Peripheral Component Interconnect) express bus in the case of a
computer processor. The choice should take into account the
performance targeted for the global design, the communication and
post-processing overheads, as well as the implementation
constraints.

4.2. Design configurability

Our accelerator has been designed to support polynomials of
any degree and any coefficients size. This goal has been met thanks
to four hierarchy levels. As shown in Figure 6, level 1 and level 3
compute the product of two polynomials with large degree, while
levels 2 and 4 deal with the product of coefficients with large sizes.
This approach allows us to design efficient implementations for the
lower (smaller) blocks, and configurable algorithms for the upper
(larger) ones.

The designer starts by defining the input parameters (degree,
coefficients size and irreducible polynomial used for the modular
reduction).

In order to compute the multiplication of large input
polynomials, we first represent the inputs as sets of polynomials of
smaller fixed degree K. Then, we compute the pairwise products
of each pair of sub-polynomials, using a hardware block for the

multiplication of polynomials of fixed degree K based on the
Schoolbook algorithm. This algorithm is not the fastest from a pure
algorithmic point of view (asymptotic complexity), but it has three
main advantages: it is more efficiently implemented on FPGA
targets [12], it does not require pre- or post-processing and it does
not impose any specific constraints thus allowing the possibility of
optimizations such as batching (see section 5.3). An additional
reason for choosing this algorithm is that the proposed
decomposition limits the degree of the polynomials at level 3, so
the degrees required to take full advantage of the asymptotic
complexity of other algorithms is not reached.

Figure 6. Multi-level design

The product of large coefficients is calculated through a RNS
(Residue Number System) approach [15]. The advantage of RNS
is that computations can be performed in parallel, that can result in
a significant speed-up. We convert each large coefficient into a set
of several values of smaller size by applying the RNS
transformation. This technique can be easily made (almost)
independent of the coefficient size: in order to support larger
coefficients, it is sufficient to add a new element to the existing
RNS basis without need to change the underlying architecture. A
more detailed description of our approach is discussed in [16].

Let us mention that for small degrees and/or small coefficients
sizes, level 1 and/or level 2 are optional (see Figure 6), as the
algorithm can operate directly on full size operands.

4.3. SW/HW Partitioning

Our hybrid design implements part of the computations in
software and part of them in hardware. The adopted partitioning is
summarized in Figure 7. On the software-level, we consider simple
and cheap computations such as input representations in subset
polynomials, RNS basis generation, and polynomial additions;
additionally, polynomial modular reduction is also computed on
the main processor, in order to take advantage of the flexibility of
a software implementation.

The hardware part implements the product of large coefficients
in the RNS domain, and the Schoolbook multiplication algorithm
at the polynomial level.

In order to reach our goals in terms of flexibility (size of
parameters, but also implementation target), the hardware blocks
are generated with a High Level Synthesis (HLS) tool.

4.4. High Level Synthesis

High Level Synthesis aims at transforming a generic input
algorithm into a Register Transfer Level (RTL) architecture for a
given target technology. This allows obtaining better productivity

Coefficients size

Small degree
of the basic block

Input polynomials

Level 1

Degree
Level 2

Level 3

Small coefficients
RNS basis

Level 4

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 430

when compared to classical implementation approaches using
direct RTL design in languages such as VHDL or Verilog, as the
designer can work on a higher level language which is much easier
to maintain.

Figure 7. Modular polynomial multiplier: SW/HW partitioning overview

Several HLS tools exist; in this work, we use AUGH [17] since
it is open, it may support different targets through the
corresponding tool chain, and it can provide early estimations
about the performance of the final result that can guide the designer
in rapid refinement loops. AUGH is an autonomous HLS tool: it
generates RTL descriptions quickly, under only global resource
and frequency constraints [18]. This is achieved by performing
incremental transformations of the input design description. The
small complexity of the design space exploration (DSE) algorithm
and the efficient use of all internal circuit structure constraints
make this HLS tool very fast and able to generate pertinent
solutions.

In this work, we will target two different FPGA technologies
and a SoC (System on Chip) from Xilinx, but the methodology can
be applied to other targets as well, provided that the corresponding
flow is available. In our context, specifying new polynomials just
implies to modify the input algorithms described in C language and
let the HLS tool produce the RTL descriptions for every new
specification (see Figure 8). Changing other parameters is fast and
simple as well, as the designer can modify directly the high level
description of the algorithm. Similar interventions on a RTL
description of the design would take much more time and would
be much more prone to errors due to a more complex description
code.

AUGH provides different techniques for design optimizations,
including unrolling and pipelining for the loops, wiring for the
branch conditions and using maximum operator sharing [18]. Each
RTL generation is analyzed by the user who can then command the
HLS tool (with these directives) to converge towards a better
solution in the next trial. DSE process detects possible
transformations of the design that bring more parallelism, and
applies these transformations until the user resource constraints are
reached. Then, the RTL design description is generated.

5. Implementations, comparisons and discussions

5.1. Comparison with the state of the art

In order to provide a fair comparison of our results with the
state of the art, we configure our design with parameters as close
as possible to [10], [11] and [12] and perform the synthesis on
similar targets.

Figure 8. HLS based approach: tool chain

We set parameters for multiplication of polynomials of degree
512, 1024 and 32768 and with coefficients sizes of 26 and 32 bits.
Under these configurations and for the smallest degrees, we do
not divide inputs into smaller polynomials and we feed our basic
block of level 3 directly with the corresponding polynomials.

Table 1 demonstrates that our approach, though about twice
slower compared to manually optimized designs, consumes much
fewer resources than the two designs reported in [11]. We obtain
a reduction by a factor of 9 on average. This significant difference
can be explained by the choice of the polynomial multiplication
algorithm. For the FTT- and NTT-based algorithms (as in [11]),
the pre- and post-computation steps are complex and require
storing additional parameters. For the Schoolbook method, no
pre- and post-computations are needed and we only have to store
the input and output coefficients. Thus, FTT and NTT
implementations have lower latency than our accelerator thanks
to their lower complexity and their hand-crafted design but have
several constraints and require a large amount of hardware
resources.

For comparison with [12], where the authors implement the
Schoolbook algorithm, we present two solutions in Table 2. In
order to exploit parallelism and to achieve the minimal latency,
we apply an optimization directive of AUGH not allowing
operator sharing. Doing so, we instruct the HLS tool to use as
many DSPs as possible: in this case only LUTs are used to store
the coefficients and a maximum number of DSPs can be easily
parallelized (first design in Table 2). In the other solution (second
design in Table 2) BRAMs are used to store information, which
limits the number of DSPs that can be used efficiently. It must be
stressed, however, that our results are after placement and routing,
while [12] only gives results after synthesis. Depending on the
choice made with the HLS tool, the latency may be only slightly
augmented (+28%) compared with the noticeable gain in
resources (more than 35x). Resources can be further reduced up
to a factor of 41 with the second solution, but leading to a loss of
performance by a factor of 12.6.

 For polynomials with degree 32768 used in [10], we divide
the inputs into polynomials of degree 8192 and we apply our

Software part

Level 1
• Representation in subset polynomials

• Reconstruction
• Polynomial modular reduction

Level 2

RNS basis generation

Hardware part

Level 3
Polynomial multiplication

Level 4

• RNS
• Product

• Modular reduction
• IRNS

Communication

High-level
description

HLS tool

Synthesis
PAR

FPGA

C

HDL

.bit

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 431

approach first without any optimization. In this case (first design
in Table 3), the hardware resources required by our design are
nearly 28 times less than [10] on average; on the other hand, our
design has a latency of 41 ms, while the authors of [10] report a
latency of about 9.5 ms. Since our accelerator requires relatively
few hardware resources, we can compute in parallel on 4 instances:
with this optimization, the second design in Table 3 has a latency
comparable to [10], while still maintaining a large advantage in
resources.

Globally, these examples of results for our designs show that
they consume fewer resources than the state of the art thanks to
the proposed approach, while achieved performances can be close
to hand-made designs. Using fewer resources also leads to
possible parallelization of several instances while meeting the
resource constraints of a given FPGA; in that case, even better
performances can be reached. The approach offers at the same
time a large degree of configurability, allowing the designer to
change several important parameters on-the-fly. In addition, our
approach is highly flexible, since the same generic high-level
description can be used to produce a new circuit with different
area/performance trade-offs i.e., we can generate a very cheap
(but slow) polynomial multiplier, or a fast but more resource
consuming one. Other possible optimizations can be applied, as it
will be shown in the next sections.

5.1. Design space exploration

With our flexible design, we can instantiate our architecture
with different coefficients size and different degrees, targeting
several platforms. Larger parameters imply large values of n and
q that grant high security levels and significant multiplicative
depths.

When we handle large coefficients, our approach proposes to
transform them into their respective RNS representation. The
choice of the RNS basis (size and co-prime modulus) is primarily
based on the coefficients size of the input polynomials and the
available resources on the target device. The key idea is to take
advantage of the parallelism offered by the RNS representation
and speed up our computations. If we ever need to increase the
supported size, it is sufficient to extend the RNS basis without
need to change the underlying architecture.

The RNS basis size and modulus are kept as parameters as
well as the degree K of the basic block performing the Schoolbook
multiplication. Let us now fix for example the coefficients size at
64 bits and vary the degree from 8192 to 32768 to cover a new
range of parameters. For each degree, we choose a different
degree K of the basic block. When the resources of our target are
sufficient, we perform computations in parallel on several
instances.

Figure 9 shows that some configurations are more efficient
than others. In fact, when computations are running on P instances
in parallel, we roughly multiply the resources by P and divide the
latency by P (illustrated by the cases of n=8192 and n=32768,
figure 9). But, setting for example K=1024 to calculate the
multiplication of polynomials with a degree 16384 is not an
appropriate configuration. The performance loss is essentially due
to 16² calls to the basic block Polynomial_K. When changing K
and/or applying an optimization, the latency is also affected by the
cost of the data transfers and therefore some configurations are
not suitable.

Table 1. Comparison on Spartan 6 with polynomials of degree 1024 and 26-bit coefficients

References Resources
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇)

[11](1) 10801 3176 0 0 40.98
[11](2) 2464 915 16 14 32.28

Our work 182 114 3 10 69.1
(1) Multipliers are built by pure LUTs (2) Use DSPs and Brams

Table 2.Comparison on Virtex 7 with polynomials of degree 512 and 32-bit coefficients

References Resources
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇)

[12]* 252341 130826 512 2048 4.11
Our work (1) 7032 920 368 0 5.27
Our work (2) 171 102 3 3 66.41

(1) Data is stored in Lutrams (2) Data is stored in Brams *Synthesis results

Table 3.Comparison on Virtex7 with polynomials of degree 32786 and 32-bit coefficients

References Resources
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇)

[10] 219192 90789 139 768 9.51 × 103
Our work (1) 3392 1920 48 792 41.12 × 103
Our work (2) 13568 7680 192 792 10.28 × 103

(1) Our approach without optimizations (2) Several instances of the basic block running in parallel

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 432

Figure 9. Performance of our designs on polynomials with 64-bit coefficients and

different configurations (degree K, parallelization, degree P)

Several multipliers with different area/performance ratios can
be generated by modifying the RNS basis and the degree K of the
basic block, and also by the parallelization of the computations on
many instances of the basic block. Thanks to the HLS design flow,
rapid feedback on circuit characteristics is used to evaluate deep
architectural changes in short time and pick up the more suitable
parameter sets. Then, the designer can select the design satisfying
his constraints among the set of generated circuits. The
development timeline of a new solution is about 3 hours on
average, which is a very short time in comparison with a hand-
made design.

5.2. Our system performances

In this section, we evaluate the performance of our hybrid
modular polynomial multiplier with respect to the communication
times between hardware and software. We run computations on
polynomials of degree 512 with 32-bit coefficients and we pick
two choices for the modular polynomial:f(x) = x512 + 1, and a
general cyclotomic polynomial of degree 512. This choice is
motivated by the possibility, allowed by a generic polynomial, of
applying the batching optimization [19].This technique can be
used in order to pack multiple messages into one single ciphertext,
therefore allowing parallel homomorphic evaluations. Hence, it
permits great versatility in the computations and improves
performance. This technique is based on the CRT theorem and
requires that the polynomial f(x) is different from xn + 1.

To transfer data, we consider an AXI interconnection between
the hardware and software part. Our platform is the Zybo Zynq-
7000. In our case, we send to the FPGA two input polynomials of
32*512 bits each and we receive one polynomial of 73*1024 bits.
We use one high performance AXI bus to send the input
coefficients and two high performance AXI buses to receive the
output polynomials: this is due to the fact that the polynomial
reduction is made in software, and the multiplication result is thus
(almost) twice larger than the operands. With this solution, we can
enhance the performance of our system and have the final result
faster: a speed up factor of about 2.98 is obtained compared with
a solution with only one bus, as the hardware acceleration is
mitigated by the data transfers.

Our architecture reports a global latency, including transfers,
of 0.75 ms when f(x) = x512 + 1 and of 1.89 ms when f(x) has a
general form, which is still very fast compared to pure software
implementations.

When compared with the state of the art, we have shown that
our implementations consume few resources but report smaller
speed-up factors. To counter this, we have proposed to run
computations on many instances of the basic block in parallel.
Figure 10 illustrates an optimized proposition when performing
computations on 4 instances of blocks with degree 512 in parallel.

5.3. System evaluation on larger parameters

In this section, we evaluate our approach on designs with
larger parameters. For each configuration, we choose two forms
of the irreducible polynomial f(x). The first one corresponds to the
popular choice xn + 1. The second one has a general form and
allows optimizations in the homomorphic context. Tables 4 and 5
provide implementation results and comparisons with software
implementations we developed with Sage and run on a Intel Core
i5-2450M (2.5 GHz). We decided to make such a comparison in
order to get the same parameters configuration of parameters and
because published works do not cover such parameters. Our
reference embedded platform (the Zybo board) has processing
power and memory that are not even comparable to desktop or
server CPUs. Nonetheless, and withstanding the overhead of the
data transfers through the AXI bus, the results obtained are quite
interesting.

Figure 10. Parallelization of the computations on many instances of the basic

block Polynomial_K [1].

Table 4. Implementation results (ms) when f(x) = 𝑥𝑥𝑛𝑛 + 1

n q Software
implementation

Our design

4096 32 32.6 2.1
8192 64 76.7 5.8

16384 128 162.8 11.7

Table 5. Implementation results (ms) when f(x) has a general form

n q Software
implementation

Our design

4096 32 41.8 4.1
8192 64 88.5 12.7

16384 128 202.9 21.8

Results show that our approach reports significant speed-up
factors when compared with pure software implementations, in
spite of the large parameter values. The latencies when the

http://www.astesj.com/

A. Mkhinini and al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1,426-433 (2018)

www.astesj.com 433

polynomial reduction is computed modulo xn + 1 are better than
the reduction modulo a polynomial with general form. This is due
to the complex form of the polynomial in the second case (only 2
coefficients vs. (n+1) coefficients) and to the number of iterations
required to get the final results. For a fair comparison, it must be
stated that such a general form is not covered by most works in
the literature, especially when hardware implementations are
considered.

Several software implementations and libraries dedicated to
homomorphic cryptography exist today [20], Error! Reference
source not found.[21], which achieve very interesting
performance when executing on high-end processors. These
implementations are usually based on the NTT-based algorithm in
order to speed up the modular multiplication on very large
operands. This algorithm, however, has very large requirements
in terms of memory usage, it constrains the choice of parameters,
and it is usually optimized by exploiting the advanced instruction
set available on modern processors, such as SSE and AVX. When
targeting limited devices and/or current client-server frameworks,
those implementations cannot be used directly because of the
memory cost, or do not perform well enough due to missing
advanced instructions. For this reason, a comparison with these
works is difficult, since different application domains and
platforms are targeted.

6. Conclusion and future works

We present a flexible and generic SW/HW co-design for the
modular polynomial multiplication, the most computationally
intensive operation in homomorphic cryptosystems based on the
RLWE problem. Given the large parameters required in such
schemes, we propose an RNS based algorithm and an efficient
decomposition of the large input polynomials. Our design can be
easily configured thanks to a HLS approach and sets no
restrictions on the parameters that define the RLWE problem
leading to high security levels and large multiplicative depths
when necessary. Our approach can also optimize the accelerator
for applications requiring small parameters. Our architecture can
be instantiated to accelerate any RLWE-based scheme;
additionally, even if the proposed methodology has been
illustrated only on the polynomial multiplication, it can be used to
implement and accelerate other primitives required by
homomorphic schemes.

Future works include more complex communication
schemes, such as using two AXI High Performance input ports
and thus increase the number of instances performing in parallel.
As the memory is one major bottleneck, we can reduce the amount
of memory by controlling and scheduling the loading of sub-
polynomials Ai(x) and Bj(x) . It may also be interesting to
evaluate the benefits of a hardware implementation of the
polynomial reduction. Other primitives used in the FHE schemes
may also be implemented in hardware using the same
methodology. Finally, these accelerators will be integrated to
evaluate a full homomorphic scheme on an FPGA/processor
platform targeting embedded applications, and the performance
will be compared to state-of-art software libraries ported to the
same environment.

References
[1] A. Mkhinini, P. Maistri, R. Leveugle and R. Tourki, HLS design of a

hardware accelerator for Homomorphic Encryption, IEEE 20th International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS’17), pp. 178-183, Dresden, Allemagne, 19 au 21 avril 2017.

[2] C. Gentry, A fully homomorphic encryption scheme, Ph.D. dissertation
Stanford University, 2009.

[3] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn
Stam, editor, Cryptography and Coding, volume 8308 of LNCS, pages 45–
64. Springer Berlin Heidelberg, 2013.

[4] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. http://eprint.iacr.org/.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, pages 309–
325, Cambridge, Massachusetts, 2012. ACM.

[6] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic
encryption schemes FV and YASHE. In Progress in Cryptology -
AFRICACRYPT 2014,7th International Conference on Cryptology in
Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, pages 318-335,
2014.

[7] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Advances in Cryptology - Crypto 2012, volume
7417 of LNCS, pages 868–886. Springer, 2012.

[8] Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in
Cryptology-CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 554-571,
2014.

[9] Kim Laine and Rachel Player. Simple encrypted arithmetic library - seal
(v2.0). Technical report, Microsoft Research, September 2016.

[10] Y. Doröz, E. Öztürk, E. Savas, B. Sunar , "Accelerating LTV Based
Homomorphic Encryption in Reconfigurable Hardware",CHES ‘15, 185-
204.

[11] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao,
and I. Verbauwhede, “High-speed polynomial multiplication architecture for
ring-lwe and SHE cryptosystems,” IEEE Trans. on Circuits and Systems,
vol. 62-I, no. 1, pp. 157–166, 2015.

[12] Cedric Jayet‐Griffon, M.‐A. Cornelie, P. Maistri, Ph. Elbaz‐Vincent and R.
Leveugle. Polynomial Multipliers for Fully Homomorphic Encryption on
FPGA. In 2015 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Mexico City, 2015, pages 1-6.

[13] S. Sinha Roy, K. Järvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
Modular hardware architecture for somewhat homomorphic function
evaluation, in Proc. of Cryptographic Hardware and Embedded Systems –
CHES 2015. Springer, pp. 164–184.

[14] V. Migliore; M. Mendez Real, V. Lapotre, A. Tisserand, C. Fontaine, G.
Gogniat. Hardware/Software co-Design of an Accelerator for FV
Homomorphic Encryption Scheme using Karatsuba Algorithm. In IEEE
Transactions on Computers, vol.PP, no.99, pp.1-1.

[15] H. L. Garner, The residue number system, IRE Transactions on Electronic
Computers, vol. EC-8, no. 2, pp. 140–147, Jun. 1959.

[16] A. Mkhinini, P. Maistri, R. Leveugle, R.Tourki and M. Machhout, A Flexible
RNS based Large Polynomial Multiplier for Fully Homomorphic
Encryption, 11th IEEE International Design & Test Symposium (IDT),
Hammamet, Tunisia, December 18-20, 2016, pp. 131-136.

[17] A. Prost-Boucle, “Augh project” 2016, [Online]. Available:
http://tima.imag.fr/sls/research-projects/augh/

[18] A. Prost-Boucle, O. Muller, and F. Rousseau, Fast and standalone design
space exploration for high-level synthesis under resource constraints, Journal
of Systems Architecture, vol. 60, n. 1, 79–93, 2014.

[19] N. P. Smart, F. Vercauteren, Fully homomorphic SIMD operations, Des.
Codes Cryptography 71(1): 57-81 (2014).

[20] Seal : Simple Encrypted Arithmetic Library,
https://sealcrypto.codeplex.com/

[21] Helib library, https://github.com/shaih/HElib
[22] NFLlib library, https://github.com/CryptoExperts/FV-NFLlib

http://www.astesj.com/
http://dblp.uni-trier.de/pers/hd/s/Smart:Nigel_P=
http://dblp.uni-trier.de/pers/hd/v/Vercauteren:Frederik
http://dblp.uni-trier.de/db/journals/dcc/dcc71.html#SmartV14
http://dblp.uni-trier.de/db/journals/dcc/dcc71.html#SmartV14

	2.1. Homomorphic encryption
	2.2. Analysis of software implementations of homomorphic schemes
	2.3. Modular polynomial multiplication in RLWE-based schemes
	2.4. Parameters Derivation
	4.1. General presentation
	4.2. Design configurability
	4.3. SW/HW Partitioning
	4.4. High Level Synthesis
	5.1. Comparison with the state of the art
	Figure 8. HLS based approach: tool chain
	5.1. Design space exploration
	5.2. Our system performances
	5.3. System evaluation on larger parameters

	6. Conclusion and future works
	References

