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 Fully Homomorphic Encryption (FHE) is considered as a key cryptographic tool in 
building a secure cloud computing environment since it allows computing arbitrary 
functions directly on encrypted data. However, existing FHE implementations remain 
impractical due to very high time and resource costs. These costs are essentially due to the 
computationally intensive modular polynomial multiplication. In this paper, we present a 
software/hardware co-designed modular polynomial multiplier in order to accelerate 
homomorphic schemes. The hardware part is implemented through a High-Level Synthesis 
(HLS) flow. Experimental results show competitive latencies when compared with hand-
made designs, while maintaining large advantages on resources.  Moreover, we show that 
our high-level description can be easily configured with different parameters and very large 
sizes in negligible time, generating new designs for numerous applications.  
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1. Introduction 

This paper is an extension of the work originally presented in 
2017 IEEE International Symposium on Design and Diagnostics 
of Electronic Circuits and Systems [1]. 

Homomorphic encryption is one of the most significant 
advances in cryptography in the last decade. It allows arbitrary 
computations on ciphertexts without compromising the content of 
the corresponding plaintexts. Thus, data can remain confidential 
while it is processed, enabling useful tasks to be accomplished with 
data being stored in untrusted environments. Considering the 
recent growth in the adoption of the cloud computing and the large 
deployment of the internet of things, homomorphic cryptography 
will have a major impact on preserving security and privacy in the 
coming years. Enterprise customers in the medical and financial 
sectors, for example, can potentially save money and streamline 
business processes by outsourcing not only the storage but also the 
computation of their data to public clouds. 

Since the introduction of the first fully homomorphic 
encryption (FHE) scheme by Gentry [2] in 2009, we have noticed 
substantial research in the area, for the purpose of designing new 
homomorphic encryption algorithms, improving the schemes, their 
implementations, and their applications. Among them, the schemes 

that are based on Ring Learning With Errors (RLWE) [3] [4] [5] 
are among the most efficient homomorphic schemes because of 
their simpler structure, strong hardness assumptions, reduced key 
size, and reduced ciphertexts expansion with respect to previous 
schemes. Many of these RLWE-based schemes have been 
implemented in software [6] [7] [8] [9]. Results report very large 
latencies and resources consumption. So, in order to improve the 
performance of homomorphic encryption schemes, there has been 
research into the hardware acceleration of various homomorphic 
schemes and their building blocks. To date, there have been few 
hardware implementations for cryptosystems based on the RLWE 
problem. The corresponding architectures were mainly designed 
for fixed and small length operands and optimized for a restricted 
set of parameters [10], [11], [12], making them limited in terms of 
target applications and security requirements.  

This paper presents a flexible and configurable accelerator 
implementing modular polynomial multiplication; the main 
performance bottleneck in RLWE-based homomorphic schemes. 
The work describes a software/hardware (SW/HW) co-designed 
architecture based on a High-Level Synthesis (HLS) approach. By 
combining HLS and SW/HW partitioning, we are able to easily 
configure our modular multiplier with large parameters (larger 
than those seen in the literature) suited for high security 
requirements. In addition, our modular polynomial reducer can be 
defined as any generic (cyclotomic) polynomial, allowing 
optimizations in the homomorphic context. We demonstrate the 
efficiency of the approach on many designs of full modular 
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polynomial multipliers satisfying different area/latency trade-offs. 
So, our results can guide a designer in his choice of the 
appropriated configuration with respect to the targeted application.    

The paper is organized as follows. In section 2, the background 
information is introduced. Section 3 presents the related works. 
Section 4 describes our proposed design. Implementation details 
are reported and discussed in section 5. 

2. Theoretical background  

2.1. Homomorphic encryption  

The purpose of homomorphic encryption is allowing 
computations on encrypted data. This means that if a user has a 
function called f  and wants to get  f(m1, m2, … , mt) for some 
plaintext messages (m1, m2, … , mt) , it is possible to instead 
compute on the corresponding ciphertexts(c1, c2, … , ct)obtaining a 
result which decrypts to f(m1, m2, … , mt).  

Formally, if  Encrypt(mi) = ci(i = 1. . t)  then when 
evaluating a function f homomorphically on(c1, c2, … , ct), we get:  

Decrypt [f (c1, … , ct)] = f (m1, … , mt) 

Since every function f can be expressed as a series of additions 
and multiplications over some algebraic structure, a homomorphic 
encryption scheme can be defined as an augmented encryption 
scheme with two additional functions HE.Add() and HE.Mult() to 
add or multiply on ciphertexts, that result in a ciphertext encrypting 
respectively the sum or the product of the underlying plaintexts. 
Figure 1 shows an example of application of FHE in the context of 
cloud computing. When the number of successive additions 
HE.Add() and multiplications HE.Mult() can be unlimited during 
the evaluation step (i.e., computation of the function f), the scheme 
is known as a fully homomorphic encryption scheme. This 
generally requires to periodically refresh the ciphertext, otherwise 
it will be impossible to decrypt. This operation is performed in the 
encrypted domain and is called "bootstrapping".  

 

2.2. Analysis of software implementations of homomorphic 
schemes  

In order to define the most frequent and time consuming 
functions during the execution of homomorphic encryption 
schemes, we profiled existing software implementations [6] [8] of 
three RLWE-based cryptosystems. Figure 2 shows the profiling 
results. The analysis reports that polynomial multiplication 
consumes 41% to 58% of the total execution time. The polynomial 
multiplication is needed in the encryption, decryption, and 
evaluation (homomorphic multiplication) steps, as well. For 
instance, we resume in Figure 3 the operation flow of 
homomorphic multiplication of two ciphertexts (c1, c2) in case of 
scheme 2 (see Figure 2). In practice, we need 4 polynomial 

multiplications in order to get cmult. For this reason, a hardware 
acceleration of this function is of great interest. Hence, an 
optimized implementation of the modular polynomial 
multiplication is the target of this paper. 

 

 

 

2.3. Modular polynomial multiplication in RLWE-based schemes 

In RLWE-based cryptosystems, the primitives are defined over 
a modular polynomial ring of the form Rq =  ℤq[x] f(x)⁄  where 
f(x) is a specific irreducible polynomial (cyclotomic polynomial) 
of degree n and q is an integer modulus (𝑞𝑞 > 0). Parameters n and 
q define respectively the degree and the coefficient size of 
polynomials in Rq. Operating in Rq requires reductions modulo q 
and modulo f(x). 

Let A(x) = an−1xn−1 + … . +a0  ≡ (an−1, … . , a0)  and 
B(x) = bn−1xn−1 +  … . +b0  ≡ (bn−1, … . , b0)  be two 
polynomials of Rq. Computing C(x) = A(x) × B(x) in Rq needs 
to first compute the polynomial multiplication of A(x) and B(x) 
and then reduce the result modulo (𝑞𝑞, 𝑓𝑓(𝑥𝑥)). 

Here is a simple example where n = 4, q = 5 and f(x) = x4 +
1. We choose: 
A(x) = x3 + 3x2 + 4x1 + 1   ≡ (1,3,4,1) and 
B(x) = 2x3 + 1x2 + 4x1 + 0 ≡  (2,1,4,0) 
As shown in figure 4, the result 𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) × 𝐵𝐵(𝑥𝑥) 
mod (𝑞𝑞, 𝑓𝑓(𝑥𝑥)) is equal to 𝐶𝐶  (3,0,2,0)𝑖𝑖𝑖𝑖𝑖𝑖

=  . 

2.4. Parameters Derivation  

The schemes based on the RLWE problem are governed by a 
number of inter-related parameters. The modulus q and the degree 
n are chosen in order to satisfy a given security level 𝜆𝜆 and a given 
multiplicative depth L (defined as the maximal number of 
multiplications that the scheme can handle before it becomes 
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necessary to apply the bootstrapping procedure). The derivation of 
these parameters is getting increasing attention lately, in order to 
provide easy-to-use guidelines for real world applications. In a 
nutshell, the methodology for parameters extraction aims at sizing 
these parameters in order to respond to the desired trade-off 
between security, efficiency, and correctness. Real use-cases of 
homomorphic cryptosystems define requirements for the 
multiplicative depth L and the security level λ, then one needs to 
choose the corresponding values of n and q. Figure 5 illustrates the 
wide space of practical parameters for RLWE-based schemes with 
different constraints on L. These configurations are extracted from 
[6] where the authors explain how to choose these parameters in 
order to guarantee correctness and security against lattice attacks. 
They use a lattice basis reduction algorithm based on the van de 
Pol and Smart approach. This algorithm determines an upper 
bound on the modulus in a given dimension and for targeted 
numbers of multiplicative depth L, to ensure a given security level. 

For example, with L set to 1, polynomials with a degree around 
1024 and coefficients on less than 100 bits can be sufficient. But 
another scheme requires at least a degree n = 101853 and a 
coefficients size log2(q)= 278 bits to achieve a security level λ = 
80 bits and a multiplicative depth of 20. Consequently, if we want 
to target a large set of real applications, our design must be flexible 
and accept such variations of the parameters.  

 

3. Related works  

Two principal ways are employed in order to accelerate 
homomorphic cryptosystems: hardware implementation and GPU 
(Graphic Processing Unit) acceleration. Hardware accelerators 
focus mainly on accelerating the most complex functions of 
homomorphic encryption schemes. There has been some research 
already conducted into hardware implementations of RLWE-based 
schemes and their related building blocks. Almost all of them focus 
on the polynomial multiplication. 

Many of these implementations have used the Number 
Theoretic Transform (NTT) or the Negative Wrapped Convolution 
(NWC) to perform polynomial multiplication in Rq efficiently. 
NTT and NWC are two special forms of the Fast Fourier 
Transform (FFT), known as the asymptotically fastest algorithm 
for computing polynomial multiplication. 

In [10], Doröz et al. propose an implementation of the modular 
polynomial multiplication computed with the NTT algorithm and 
a Barrett reducer. A pre-computation based on the Chinese 
Remainder Theorem (CRT) is performed on input polynomials to 
reduce the size of coefficients. The overall architecture is based on 
an array of units, which gives some flexibility to process several 
residue polynomials in parallel. They evaluate their architecture on 

polynomials of fixed degree n =215, and fixed coefficients size 
𝑙𝑙𝑙𝑙𝑙𝑙2(𝑞𝑞) = 32 bits. Their accelerator was dedicated for a specific 
homomorphic scheme. In [11], Chen et al. present an optimized 
design of the modular polynomial multiplication. 

 

All computations are carried out in the FFT domain on 
polynomials with degree n  ∈ [256, 2048] and coefficients size 
∈[20, 29]. They provide a selection method for the parameter set 
supporting efficient modular reduction, meeting at the same time 
the security requirements for RLWE and Somewhat Homomorphic 
Encryption (SHE) schemes. SHE means that the maximum number 
of successive operations in the encrypted domain is limited. 
Though efficient, this selection leads to many restrictions on the 
polynomials supported by the design: polynomial modular 
reduction is in fact computed with respect to the common choice 
f(x) = xn + 1. When FFT multiplication using NWC is employed, 
they show that the modular reduction (xn + 1) is eliminated; this 
elimination comes at the expense of pre- and post-computation 
steps. A hardware architecture for the modular polynomial 
multiplication is described in [13]. They provide a fast unit for 
polynomial operations using CRT and NTT for multiplication 
combined with an optimized memory access scheme and a Barrett 
reduction method. The implemented unit can be used to instantiate 
a specific encryption scheme.  Results are provided for n = 32768 
and 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑞𝑞) = 1228 bits. The authors of [14] use the Karatsuba 
algorithm to implement the modular polynomial multiplication in 
hardware. They demonstrate that for various degrees and 
coefficient sizes, Karatsuba can be a good alternative to FFT. 
Lastly, Jayet-Griffon et al. [12] consider the polynomial 
multiplication of 512-degree polynomials with 32-bit coefficients. 
They analyze and compare three algorithms (Karatsuba, FFT, and 
Schoolbook): the Schoolbook method is shown as the most 
efficient for a hardware implementation, due to its simple and 
regular structure. Modular reductions were not covered in their 
work.  

All the aforementioned related works reported significant 
speed up factors when compared with software implementations. 
This speed up illustrates that further research into hardware 
implementations could greatly improve the performance of FHE 
schemes. However, they are almost all designed for fixed length 
operands and optimized for one specific type of multiplication 
algorithm (mainly FFT-based algorithms) which puts restrictions 
on the parameters selection. This makes them limited to some 
specific schemes and application domains. Besides, the operand 
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sizes are not very large, which has a direct impact on the security 
level of the cryptosystem. When modular polynomial reductions 
are performed, the simplest (and more limiting) choice is often 
selected. 

Consequently, existing designs can be considered as proof-of-
concept implementations only suitable for homomorphic 
encryption with small multiplicative depth circuits and low 
computation complexity. In the homomorphic context and because 
of its rapid growth evolution, new designs with a wide range of 
parameters are needed. These parameters are very large, consume 
large amounts of memory, and require many resources in order to 
perform efficient computations. Thus, memory storage and 
available resources in a target device should be taken into 
consideration, especially when manufacturing a specific circuit is 
not affordable and FPGA (Field Programmable Gate Array) 
platforms are therefore intended. 

4. Software/Hardware design description  

4.1. General presentation  

We propose a hybrid and flexible SW/HW design based on a 
generic polynomial multiplier. This design is basically constructed 
from two parts: a dedicated hardware accelerator, and the software 
running on a general-purpose processor. Our solution aims at 
improving the overall performance and supporting much larger 
parameter sets than previous designs while optimizing resources 
for a given computation performance level. As in most previously 
published approaches, we will demonstrate our solution on FPGA-
based implementations. However, the same approach may also be 
used with pre-characterized libraries to generate an application-
specific integrated circuit (ASIC). The general-purpose processor 
can be implemented on-chip, or the hardware part of the 
accelerator can be connected to a computer. The interface between 
hardware and software can thus be performed, for example, 
through a high performance AXI (Advanced eXtensible Interface) 
bus, when software is running on an embedded processor, or a PCI 
(Peripheral Component Interconnect) express bus in the case of a 
computer processor. The choice should take into account the 
performance targeted for the global design, the communication and 
post-processing overheads, as well as the implementation 
constraints. 

4.2. Design configurability  

Our accelerator has been designed to support polynomials of 
any degree and any coefficients size. This goal has been met thanks 
to four hierarchy levels. As shown in Figure 6, level 1 and level 3 
compute the product of two polynomials with large degree, while 
levels 2 and 4 deal with the product of coefficients with large sizes. 
This approach allows us to design efficient implementations for the 
lower (smaller) blocks, and configurable algorithms for the upper 
(larger) ones. 

The designer starts by defining the input parameters (degree, 
coefficients size and irreducible polynomial used for the modular 
reduction). 

In order to compute the multiplication of large input 
polynomials, we first represent the inputs as sets of polynomials of 
smaller fixed degree K. Then, we compute the pairwise products 
of each pair of sub-polynomials, using a hardware block for the 

multiplication of polynomials of fixed degree K based on the 
Schoolbook algorithm. This algorithm is not the fastest from a pure 
algorithmic point of view (asymptotic complexity), but it has three 
main advantages: it is more efficiently implemented on FPGA 
targets [12], it does not require pre- or post-processing and it does 
not impose any specific constraints thus allowing the possibility of 
optimizations such as batching (see section 5.3). An additional 
reason for choosing this algorithm is that the proposed 
decomposition limits the degree of the polynomials at level 3, so 
the degrees required to take full advantage of the asymptotic 
complexity of other algorithms is not reached. 

 
Figure 6. Multi-level design 

The product of large coefficients is calculated through a RNS 
(Residue Number System) approach [15]. The advantage of RNS 
is that computations can be performed in parallel, that can result in 
a significant speed-up. We convert each large coefficient into a set 
of several values of smaller size by applying the RNS 
transformation. This technique can be easily made (almost) 
independent of the coefficient size: in order to support larger 
coefficients, it is sufficient to add a new element to the existing 
RNS basis without need to change the underlying architecture. A 
more detailed description of our approach is discussed in [16]. 

Let us mention that for small degrees and/or small coefficients 
sizes, level 1 and/or level 2 are optional (see Figure 6), as the 
algorithm can operate directly on full size operands. 

4.3. SW/HW Partitioning 

Our hybrid design implements part of the computations in 
software and part of them in hardware. The adopted partitioning is 
summarized in Figure 7. On the software-level, we consider simple 
and cheap computations such as input representations in subset 
polynomials, RNS basis generation, and polynomial additions; 
additionally, polynomial modular reduction is also computed on 
the main processor, in order to take advantage of the flexibility of 
a software implementation. 

The hardware part implements the product of large coefficients 
in the RNS domain, and the Schoolbook multiplication algorithm 
at the polynomial level.  

In order to reach our goals in terms of flexibility (size of 
parameters, but also implementation target), the hardware blocks 
are generated with a High Level Synthesis (HLS) tool. 

4.4. High Level Synthesis 

High Level Synthesis aims at transforming a generic input 
algorithm into a Register Transfer Level (RTL) architecture for a 
given target technology. This allows obtaining better productivity 
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when compared to classical implementation approaches using 
direct RTL design in languages such as VHDL or Verilog, as the 
designer can work on a higher level language which is much easier 
to maintain.  

 
Figure 7. Modular polynomial multiplier: SW/HW partitioning overview 

Several HLS tools exist; in this work, we use AUGH [17] since 
it is open, it may support different targets through the 
corresponding tool chain, and it can provide early estimations 
about the performance of the final result that can guide the designer 
in rapid refinement loops. AUGH is an autonomous HLS tool: it 
generates RTL descriptions quickly, under only global resource 
and frequency constraints [18]. This is achieved by performing 
incremental transformations of the input design description. The 
small complexity of the design space exploration (DSE) algorithm 
and the efficient use of all internal circuit structure constraints 
make this HLS tool very fast and able to generate pertinent 
solutions. 

In this work, we will target two different FPGA technologies 
and a SoC (System on Chip) from Xilinx, but the methodology can 
be applied to other targets as well, provided that the corresponding 
flow is available. In our context, specifying new polynomials just 
implies to modify the input algorithms described in C language and 
let the HLS tool produce the RTL descriptions for every new 
specification (see Figure 8). Changing other parameters is fast and 
simple as well, as the designer can modify directly the high level 
description of the algorithm. Similar interventions on a RTL 
description of the design would take much more time and would 
be much more prone to errors due to a more complex description 
code. 

AUGH provides different techniques for design optimizations, 
including unrolling and pipelining for the loops, wiring for the 
branch conditions and using maximum operator sharing [18]. Each 
RTL generation is analyzed by the user who can then command the 
HLS tool (with these directives) to converge towards a better 
solution in the next trial. DSE process detects possible 
transformations of the design that bring more parallelism, and 
applies these transformations until the user resource constraints are 
reached. Then, the RTL design description is generated. 

5. Implementations, comparisons and discussions  

5.1. Comparison with the state of the art  

In order to provide a fair comparison of our results with the 
state of the art, we configure our design with parameters as close 
as possible to [10], [11] and [12] and perform the synthesis on 
similar targets.  

 

 
Figure 8. HLS based approach: tool chain  

We set parameters for multiplication of polynomials of degree 
512, 1024 and 32768 and with coefficients sizes of 26 and 32 bits. 
Under these configurations and for the smallest degrees, we do 
not divide inputs into smaller polynomials and we feed our basic 
block of level 3 directly with the corresponding polynomials.  

Table 1 demonstrates that our approach, though about twice 
slower compared to manually optimized designs, consumes much 
fewer resources than the two designs reported in [11]. We obtain 
a reduction by a factor of 9 on average. This significant difference 
can be explained by the choice of the polynomial multiplication 
algorithm. For the FTT- and NTT-based algorithms (as in [11]), 
the pre- and post-computation steps are complex and require 
storing additional parameters. For the Schoolbook method, no 
pre- and post-computations are needed and we only have to store 
the input and output coefficients. Thus, FTT and NTT 
implementations have lower latency than our accelerator thanks 
to their lower complexity and their hand-crafted design but have 
several constraints and require a large amount of hardware 
resources. 

For comparison with [12], where the authors implement the 
Schoolbook algorithm, we present two solutions in Table 2. In 
order to exploit parallelism and to achieve the minimal latency, 
we apply an optimization directive of AUGH not allowing 
operator sharing. Doing so, we instruct the HLS tool to use as 
many DSPs as possible: in this case only LUTs are used to store 
the coefficients and a maximum number of DSPs can be easily 
parallelized (first design in Table 2). In the other solution (second 
design in Table 2) BRAMs are used to store information, which 
limits the number of DSPs that can be used efficiently. It must be 
stressed, however, that our results are after placement and routing, 
while [12] only gives results after synthesis. Depending on the 
choice made with the HLS tool, the latency may be only slightly 
augmented (+28%) compared with the noticeable gain in 
resources (more than 35x). Resources can be further reduced up 
to a factor of 41 with the second solution, but leading to a loss of 
performance by a factor of 12.6. 

      For polynomials with degree 32768 used in [10], we divide 
the  inputs  into  polynomials  of  degree 8192 and we  apply  our   
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approach first without any optimization. In this case (first design 
in Table 3), the hardware resources required by our design are 
nearly 28 times less than [10] on average; on the other hand, our 
design has a latency of 41 ms, while the authors of [10] report a 
latency of about 9.5 ms. Since our accelerator requires relatively 
few hardware resources, we can compute in parallel on 4 instances: 
with this optimization, the second design in Table 3 has a latency 
comparable to [10], while still maintaining a large advantage in 
resources. 

Globally, these examples of results for our designs show that 
they consume fewer resources than the state of the art thanks to 
the proposed approach, while achieved performances can be close 
to hand-made designs. Using fewer resources also leads to 
possible parallelization of several instances while meeting the 
resource constraints of a given FPGA; in that case, even better 
performances can be reached. The approach offers at the same 
time a large degree of configurability, allowing the designer to 
change several important parameters on-the-fly. In addition, our 
approach is highly flexible, since the same generic high-level 
description can be used to produce a new circuit with different 
area/performance trade-offs i.e., we can generate a very cheap 
(but slow) polynomial multiplier, or a fast but more resource 
consuming one. Other possible optimizations can be applied, as it 
will be shown in the next sections.  

5.1. Design space exploration 

With our flexible design, we can instantiate our architecture 
with different coefficients size and different degrees, targeting 
several platforms. Larger parameters imply large values of n and 
q that grant high security levels and significant multiplicative 
depths.  

When we handle large coefficients, our approach proposes to 
transform them into their respective RNS representation. The 
choice of the RNS basis (size and co-prime modulus) is primarily 
based on the coefficients size of the input polynomials and the 
available resources on the target device. The key idea is to take 
advantage of the parallelism offered by the RNS representation 
and speed up our computations. If we ever need to increase the 
supported size, it is sufficient to extend the RNS basis without 
need to change the underlying architecture.  

The RNS basis size and modulus are kept as parameters as 
well as the degree K of the basic block performing the Schoolbook 
multiplication. Let us now fix for example the coefficients size at 
64 bits and vary the degree from 8192 to 32768 to cover a new 
range of parameters. For each degree, we choose a different 
degree K of the basic block. When the resources of our target are 
sufficient, we perform computations in parallel on several 
instances. 

Figure 9 shows that some configurations are more efficient 
than others. In fact, when computations are running on P instances 
in parallel, we roughly multiply the resources by P and divide the 
latency by P (illustrated by the cases of n=8192 and n=32768, 
figure 9). But, setting for example K=1024 to calculate the 
multiplication of polynomials with a degree 16384 is not an 
appropriate configuration. The performance loss is essentially due 
to 16² calls to the basic block Polynomial_K. When changing K 
and/or applying an optimization, the latency is also affected by the 
cost of the data transfers and therefore some configurations are 
not suitable. 

 

Table 1. Comparison on Spartan 6 with polynomials of degree 1024 and 26-bit coefficients 

References Resources 
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇) 

[11](1) 10801 3176 0 0 40.98 
[11](2) 2464 915 16 14 32.28 

Our work 182 114 3 10 69.1 
(1) Multipliers are built by pure LUTs (2) Use DSPs and Brams 

 
Table 2.Comparison on Virtex 7 with polynomials of degree 512 and 32-bit coefficients 

References Resources 
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇) 

[12]* 252341 130826 512 2048 4.11 
Our work (1) 7032 920 368 0 5.27 
Our work (2) 171 102 3 3 66.41 

(1) Data is stored in Lutrams  (2) Data is stored in Brams *Synthesis results 

Table 3.Comparison on Virtex7 with polynomials of degree 32786 and 32-bit coefficients 

References Resources 
Slice LUT Slice Register DSP BRAM Latency (𝜇𝜇𝜇𝜇) 

[10] 219192 90789 139 768 9.51 × 103 
Our work (1) 3392 1920 48 792 41.12 × 103 
Our work (2) 13568 7680 192 792 10.28 × 103 

(1) Our approach without optimizations       (2) Several instances of the basic block running in parallel       
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Figure 9. Performance of our designs on polynomials with 64-bit coefficients and 

different configurations (degree K, parallelization, degree P) 

Several multipliers with different area/performance ratios can 
be generated by modifying the RNS basis and the degree K of the 
basic block, and also by the parallelization of the computations on 
many instances of the basic block. Thanks to the HLS design flow, 
rapid feedback on circuit characteristics is used to evaluate deep 
architectural changes in short time and pick up the more suitable 
parameter sets. Then, the designer can select the design satisfying 
his constraints among the set of generated circuits. The 
development timeline of a new solution is about 3 hours on 
average, which is a very short time in comparison with a hand-
made design.  

5.2. Our system performances  

In this section, we evaluate the performance of our hybrid 
modular polynomial multiplier with respect to the communication 
times between hardware and software. We run computations on 
polynomials of degree 512 with 32-bit coefficients and we pick 
two choices for the modular polynomial:f(x) = x512 + 1, and a 
general cyclotomic polynomial of degree 512. This choice is 
motivated by the possibility, allowed by a generic polynomial, of 
applying the batching optimization [19].This technique can be 
used in order to pack multiple messages into one single ciphertext, 
therefore allowing parallel homomorphic evaluations. Hence, it 
permits great versatility in the computations and improves 
performance. This technique is based on the CRT theorem and 
requires that the polynomial f(x) is different from  xn + 1. 

To transfer data, we consider an AXI interconnection between 
the hardware and software part. Our platform is the Zybo Zynq-
7000. In our case, we send to the FPGA two input polynomials of 
32*512 bits each and we receive one polynomial of 73*1024 bits. 
We use one high performance AXI bus to send the input 
coefficients and two high performance AXI buses to receive the 
output polynomials: this is due to the fact that the polynomial 
reduction is made in software, and the multiplication result is thus 
(almost) twice larger than the operands. With this solution, we can 
enhance the performance of our system and have the final result 
faster: a speed up factor of about 2.98 is obtained compared with 
a solution with only one bus, as the hardware acceleration is 
mitigated by the data transfers. 

Our architecture reports a global latency, including transfers, 
of 0.75 ms when f(x) = x512 + 1 and of 1.89 ms when f(x) has a 
general form, which is still very fast compared to pure software 
implementations. 

When compared with the state of the art, we have shown that 
our implementations consume few resources but report smaller 
speed-up factors. To counter this, we have proposed to run 
computations on many instances of the basic block in parallel. 
Figure 10 illustrates an optimized proposition when performing 
computations on 4 instances of blocks with degree 512 in parallel. 

5.3. System evaluation on larger parameters  

In this section, we evaluate our approach on designs with 
larger parameters. For each configuration, we choose two forms 
of the irreducible polynomial f(x). The first one corresponds to the 
popular choice   xn + 1. The second one has a general form and 
allows optimizations in the homomorphic context. Tables 4 and 5 
provide implementation results and comparisons with software 
implementations we developed with Sage and run on a Intel Core 
i5-2450M (2.5 GHz). We decided to make such a comparison in 
order to get the same parameters configuration of parameters and 
because published works do not cover such parameters. Our 
reference embedded platform (the Zybo board) has processing 
power and memory that are not even comparable to desktop or 
server CPUs. Nonetheless, and withstanding the overhead of the 
data transfers through the AXI bus, the results obtained are quite 
interesting. 

 
Figure 10. Parallelization of the computations on many instances of the basic 

block Polynomial_K [1]. 

Table 4. Implementation results (ms) when f(x) = 𝑥𝑥𝑛𝑛 + 1 

n q Software 
implementation 

Our design 

4096 32 32.6 2.1 
8192 64 76.7 5.8 

16384 128 162.8 11.7 
 

Table 5. Implementation results (ms) when f(x) has a general form 

n q Software 
implementation 

Our design 

4096 32 41.8 4.1 
8192 64 88.5 12.7 

16384 128 202.9 21.8 
 
Results show that our approach reports significant speed-up 
factors when compared with pure software implementations, in 
spite of the large parameter values. The latencies when the 
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polynomial reduction is computed modulo xn + 1 are better than 
the reduction modulo a polynomial with general form. This is due 
to the complex form of the polynomial in the second case (only 2 
coefficients vs. (n+1) coefficients) and to the number of iterations 
required to get the final results. For a fair comparison, it must be 
stated that such a general form is not covered by most works in 
the literature, especially when hardware implementations are 
considered. 

Several software implementations and libraries dedicated to 
homomorphic cryptography exist today [20], Error! Reference 
source not found.[21], which achieve very interesting 
performance when executing on high-end processors. These 
implementations are usually based on the NTT-based algorithm in 
order to speed up the modular multiplication on very large 
operands. This algorithm, however, has very large requirements 
in terms of memory usage, it constrains the choice of parameters, 
and it is usually optimized by exploiting the advanced instruction 
set available on modern processors, such as SSE and AVX. When 
targeting limited devices and/or current client-server frameworks, 
those implementations cannot be used directly because of the 
memory cost, or do not perform well enough due to missing 
advanced instructions. For this reason, a comparison with these 
works is difficult, since different application domains and 
platforms are targeted. 

6. Conclusion and future works  

We present a flexible and generic SW/HW co-design for the 
modular polynomial multiplication, the most computationally 
intensive operation in homomorphic cryptosystems based on the 
RLWE problem. Given the large parameters required in such 
schemes, we propose an RNS based algorithm and an efficient 
decomposition of the large input polynomials. Our design can be 
easily configured thanks to a HLS approach and sets no 
restrictions on the parameters that define the RLWE problem 
leading to high security levels and large multiplicative depths 
when necessary. Our approach can also optimize the accelerator 
for applications requiring small parameters. Our architecture can 
be instantiated to accelerate any RLWE-based scheme; 
additionally, even if the proposed methodology has been 
illustrated only on the polynomial multiplication, it can be used to 
implement and accelerate other primitives required by 
homomorphic schemes.  

Future works include more complex communication 
schemes, such as using two AXI High Performance input ports 
and thus increase the number of instances performing in parallel. 
As the memory is one major bottleneck, we can reduce the amount 
of memory by controlling and scheduling the loading of sub-
polynomials Ai(x)  and  Bj(x) . It may also be interesting to 
evaluate the benefits of a hardware implementation of the 
polynomial reduction. Other primitives used in the FHE schemes 
may also be implemented in hardware using the same 
methodology. Finally, these accelerators will be integrated to 
evaluate a full homomorphic scheme on an FPGA/processor 
platform targeting embedded applications, and the performance 
will be compared to state-of-art software libraries ported to the 
same environment. 
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